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Overview & Motivation



 Understanding the dynamics of multiphase flows is crucial to the optimisation of 
diverse process equipment

 …but these large, metal systems are near-impossible to accurately image using 
conventional methods

How do we better understand industrial systems?



 Numerical methods (DEM, CFD, MP-PIC…) can provide insight

 But without experimental validation, simulations may be misleading

  We still need to find a way to experimentally investigate these large, 
opaque systems!

How do we better understand industrial systems?



Full, three-dimensional 
imaging

High temporal and 
spatial resolution

Capable of extracting data from 
large, opaque, metallic systems 

PEPT

X-ray CT

MRI

Radiography

PIV
3D PTV

ECT
PET

RPT

PLIF

RIMS

In-line 
sensors

MPT



Talk Overview

I) An Introduction to PEPT II) Case Study III) The Synergy of PEPT and 
Numerical Simulation



I. An Introduction to PEPT



Uses highly-penetrating gamma radiation to directly track the 
three-dimensional motion of particulate, fluid and multiphase 

systems, with high temporal and spatial resolution.

Uses highly-energetic gamma rays, capable of penetrating 
opaque media, including aluminium and steel

In essence, PEPT allows us to ‘see inside’ 
opaque systems.

Positron Emission Particle Tracking (PEPT)



How does it work?

x

x

Detector heads

Tracer Particle

Windows-Yule, C. R. K., Seville, J. P. K., 
Ingram, A., & Parker, D. J. (2020). 

Positron Emission Particle Tracking of 
Granular Flows. Annual Review of 

Chemical and Biomolecular 
Engineering, 11.



Detector heads

Tracer Particle
How does it work?

Windows-Yule, C. R. K., Seville, J. P. K., 
Ingram, A., & Parker, D. J. (2020). 

Positron Emission Particle Tracking of 
Granular Flows. Annual Review of 

Chemical and Biomolecular 
Engineering, 11.
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Example: PEPT imaging of a fluidised bed



Large, opaque vessel 
( )

Solid steel walls

Main ADAC camera heads

Modular cameras provide 
additional, flexible imaging area

Example: PEPT imaging of a serious fluidised bed



Example: PEPT imaging of a real, industrial fluidised bed

Featured in Ingenia
magazine:



High-resolution, three-dimensional data



Industrial Mixers

Windows-Yule, C. R. K., Nicuşan, A.L., Herald, 
M. T., Manger, S. & Parker, D.J., PEPT, a 

Comprehensive Guide, IoP Publishing, 2022



Windows-Yule, C. R. K., 
Nicuşan, A.L., Herald, M. T., 

Manger, S. & Parker, D.J., PEPT, 
a Comprehensive Guide, IoP

Publishing, 2022

Spiral mineral concentrators

Mills



Windows-Yule, C. R. K., Nicuşan, A.L., Herald, 
M. T., Manger, S. & Parker, D.J., PEPT, a 

Comprehensive Guide, IoP Publishing, 2022

Gas-/hydro-cyclones

Twin screw granulators

Coffee roasters



Windows-Yule, C. R. K., Nicuşan, A.L., Herald, M. T., Manger, S. & 
Parker, D.J., PEPT, a Comprehensive Guide, IoP Publishing, 2022

Domestic systems

Extruders Metal casting



The human body?



II. Case Study: Spouted Bed Coffee 
Roaster (Jacobs Douwe Egberts)



Context – Coffee Roasting
Transformations during roasting 



Context –
Coffee Roasting

air-to-
bean 
ratio 

heat
transfer

bean
density

particle 
dynamics

Product 
Quality

Quantity of beans used and 
airflow rate can be controlled

Key effects on dynamics are 
not known

To optimise the product we 
need to be able to see inside

the system



Experimental set-up





Extracting Data from PEPT Al-Shemmeri, Windows-Yule, et al. (2021). Coffee bean particle 
motion in a spouted bed measured using Positron Emission 
Particle Tracking (PEPT). Journal of Food Engineering, 110709.



 Bean bed delineation
 Defined via Otsu method threshold
 Revealed Two distinct regions

(i) dense bean bed
 Low velocity, high occupancy
 Convective heat transfer 

limited
 Lower temp. & heat transfer

(ii) dilute freeboard
 high velocity, low occupancy
 Convective heat transfer 

dominant
 Higher temp. & heat transfer 

(i) dense bean bed (i) dilute freeboard

Extracting Data from PEPT Al-Shemmeri, Windows-Yule, et al. (2021). Coffee bean particle 
motion in a spouted bed measured using Positron Emission 
Particle Tracking (PEPT). Journal of Food Engineering, 110709.



Results – Effect of batch size

roasted coffee with an air velocity of  7.2 m s-1

Increasing batch size

Larger batch  larger bed  reduced heat transfer



Results – Effect of batch size

roasted coffee with an air velocity of  7.2 m s-1

Increasing air velocity

Higher air flow smaller bed  improved heat transfer

200g batches of  green coffee



The Commercial Dilemma
Larger batch size 

• Increased throughput
• Decreased heat transfer

Increased air flow
• Increased heat transfer
• Increased energy requirements

A complex optimization problem!



III. The Synergy of PEPT and 
Numerical Modelling



An Efficient Route to 
Optimisation

• Solving an optimisation
problem requires a detailed 
exploration of the relevant 
parameter space

• (Lots of experiments!)
• Though powerful, PEPT 

facilities are rare, and thus 
oversubscribed – and the 
technique is costly to run



An Efficient Route to 
Optimisation

• Numerical simulations –
e.g. CFD-DEM – are cheap 
to run and thus allow the 
exploration of vast 
parameter space

• However, as established 
earlier, we cannot trust 
them to be accurate



PEPT as a Validation 
Tool
 PEPT can provide identical 

outputs to DEM, MP-PIC, 
CFD…

  Facilitates detailed, 
multi-point comparison 
between experiment and 
simulation, considering local
variations in key 
fields at all points in space

  Uniquely 
comprehensive  
validation

Experiment

Simulation



PEPT: 
Powerful 

and 
accurate 
but not 
cheap

CFD-DEM: 
Cheap and 
powerful 
but not 
accurate



PEPT: 
Powerful 

and 
accurate 
but not 
cheap

CFD-DEM: 
Cheap and 
powerful 
but not 
accurate

PEPT + CFD-DEM: Powerful, 
accurate, and cost-effective



Back to our
Case Study

• CFD-DEM model of roaster
• 3D velocity & occupancy fields produced for 

both PEPT and CFD-DEM
• PEPT data and CFD-DEM data discretised

on the same three-dimensional mesh



Comparing PEPT & CFD-DEM

Cell-by-cell comparison of multiple three-dimensional fields  detailed, 
highly-rigorous validation of models used  aid model choice.

Che, Windows-Yule, et al. (2023). PEPT validated CFD-
DEM model of aspherical particle motion in a spouted 
bed. Chemical Engineering Journal, 453, 139689.



Rigorous, Quantitative Validation

Model 1 Model 2 Model 3 Model 4
Occupancy 0.659 0.733 0.867 0.834

Velocity 0.942 0.930 0.913 0.903

 Simulation accuracy 
can be quantitatively 
assessed through 
Pearson coefficient (or 
others statistical 
measures)

 Pearson coefficient can 
also be used as a cost 
function for ACCES 
calibration

  Skip the 
characterisation step!

Che, Windows-Yule, et al. (2023). PEPT validated CFD-
DEM model of aspherical particle motion in a spouted 
bed. Chemical Engineering Journal, 453, 139689.



Rigorous, Quantitative Validation
Che, Windows-Yule, et al. (2023). PEPT validated CFD-
DEM model of aspherical particle motion in a spouted 
bed. Chemical Engineering Journal, 453, 139689.

For further rigour, can 
validate under 

numerous system 
conditions spanning 
full parameter space 

of interest...



Rigorous, Quantitative Validation
Che, Windows-Yule, et al. (2023). PEPT validated CFD-
DEM model of aspherical particle motion in a spouted 
bed. Chemical Engineering Journal, 453, 139689.

…as well as investigating a diverse array of other (Eulerian & Lagrangian) quantities!



End result: a 
comprehensively 
validated
numerical model 
which can be used 
to easily, 
efficiently and 
cheaply gain 
insight into JDE’s 
systems.



Not just spouted beds, not ‘just’ particles

CFD 
velocity 

field

PEPT 
velocity 

field



Not just
spouted beds, 
not ‘just’
particles
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IV. PEPT as a Calibration Tool



Autonomous Calibration using Evolutionary 
Algorithms

 Calibration is an infamously slow and difficult task
And one too often overlooked in the literature!

 As well as simply validating existing algorithms, PEPT can be 
used to calibrate simulations

 Specifically, it can be used to provide detailed objectives for 
evolutionary algorithms



ACCES:
Autonomous 

Characterisation & 
Calibration using 

Evolutionary 
Simulation

I. Choose experimental system to 
model

II. Define a cost function to quantify 
difference between experiment & 
simulation

III. Choose a suitable optimiser
IV. Set goal to minimise error function 

(i.e. maximise agreement between 
simulation and experiment)

V. Iterate towards minimum 
(i.e. find ‘true’ DEM parameters) 



I. Choosing a 
system

To illustrate ACCES in an 
accessible manner, let us 
consider a simple system 
to model: Granutools 
GranuDrum

• Simple
• Industrially relevant
• Diverse phenomenology



II. Defining a cost 
function
• Cost function can relate to 

practically any quantity
• Mean system velocity
• Velocity distribution
• Density distribution
• Granular temperature…

• Precise choice depends 
on goals of calibration

• In this example we want to 
obtain values for sliding & 
rolling friction

• Free surface shape as 
cost function



II. Defining an error 
function

• Free surface can be characterised by a 
3rd order polynomial

• Compare simulation and experimental fits



II. Defining an error 
function

• Free surface can be characterised by a 
3rd order polynomial

• Compare simulation and experimental fits

Provides a 
simple scalar 
value that can be 
used to solve the 
optimisation problem

• Cost function taken as the integral of the 
absolute difference between 
the 2 polynomials



Evolutionary Optimisation – How it Works 
The problem with 

evolutionary 
algorithms: lots of 

function evaluations

Especially problematic 
when coupled to DEM

Utilise state-of-art 
CMA-ES algorithm, 
which adaptively 

changes as the spread 
of the function 

increases 



Evolutionary Optimisation – How it Works in ACCES

Existing 
simulation 

script

User defines 
variable 

parameters 
& cost 

function

ACCES Python 
Library

Input script 
automatically 
parallelised

Evolutionary 
Optimisation

Launch 
simulation

Collect 
results & 

test fitness

Redefine 
variable 

parameters

True-to-life 
simulation

User input (once, at 
start of process) 

Absolutely no user input required!

Can run on anything from a 
laptop to a supercomputer

Metaprogramming (code that writes code): ACCES takes input 
scripts, understands them, hacks them, and modifies them to run 

in fault-tolerant massively parallel environments



V. Iterating toward 
optimal parameters

• ACCES converges on the parameter values that 
minimise the error values (cost function)

• It evolves a “family” of solutions in epochs (x-axis) 
towards the fittest individuals.

“Family size” of 100 (100 
simulations per “epoch”)

Initially exploring 
large range of 

parameter space

Rapid and clear 
convergence to 
sensible values

Convergence in under 20 
epochs!



 What if I don’t have 100 
CPUs handy?

 “Family size” can be varied 
at will.

 Larger: more global search, 
fewer epochs

 Smaller: fewer simulations 
per epoch, more epochs 

  Fully scalable from HPC 
to Laptop

 Can still autonomously 
“escape” false minima 
and reach true parameter 
values

Same problem, 1/10th family size

Fully converges 
on same, true 

optimum

V. Iterating toward 
optimal parameters

“Deep” local minimum – gradient-based 
optimiser would likely get “trapped”

ACCES autonomously 
increases search area

C.f. ANNs & other optimisers for which 10,000 evaluations per 
parameter would be considered good! 

Convergence in <40 epochs 
(<400 evaluations) with 2 

free parameters



Example solution

Early guesses Converged solution
Error of less 
than 4 mmଶ



Summary

 PEPT facilitates the detailed, 3D imaging of particulate, fluid, 
and multiphase media, even in large, opaque systems.

 Diverse array of quantities extracted from PEPT facilitates deep 
insight into the internal dynamics of both scientific and industrial 
systems

 Synergy between PEPT and numerical methods facilitates an 
optimal mix of efficiency and accuracy not achievable using 
either methodology in isolation 



Why is this talk timely?
 DEM is nothing new but recent 

advances in computational 
power, our ability to parallelise
code, techniques for upscaling
simulations, and advances in AI
combined mean that today I can 
do things with DEM that at the 
start of my career I could only 
dream of

 Specifically, things like this:

Real 
Industrial 

DEM

Power

MPI

Coarse-
graining

AI



“Evolving” the optimal design for a unit operation



I. Evolutionary Algorithms as a 
Calibration Tool:
Autonomous Characterisation & Calibration using Evolutionary Simulation (ACCES) 



Real-world motivation: the need 
for a better method of calibration

 Leading a 5-year project with IFPRI to investigate current 
industrial DEM characterisation/calibration strategies

 Detailed interviews with 8 (now 12) multinational companies 
who use DEM, spanning Agriculture, Chemical, FMCG, Food, 
& Pharmaceutical sectors

 Goal: to determine a “gold standard” methodology for the 
calibration of DEM simulations



Real-world motivation: the need 
for a better method of calibration

 No two companies 
adopted the same 
procedures, equipment, 
or geometric models

 Most produced 
different values for 
same materials

 The result?



Real-world motivation: the need 
for a better method of calibration

Real, experimental 
PEPT data 

(more on this later)
Close, but no cigar Physically 

impossible!
Not even 

close



Real-world motivation: the need 
for a better method of calibration

The scary 
part(s):

1) These are real 
methods used by 
real companies



Real-world motivation: the need 
for a better method of calibration

The scary 
part(s):

2) While a sensible operator will re-try these…

…without a technique like PEPT, how would 
we know the others are inaccurate?



Real-world motivation: the need 
for a better method of calibration

The scary 
part(s):

3) This is for a relatively simple, single-phase system containing 
only spherical particles. How will these methods stand up for 
more complex cases?



Problem statement
 Particles’ bulk properties are quick 

and easy to measure using easily-
available equipment and 
standardised procedures.

 Measurement of particles’ 
microscopic properties… is none 
of the above

  We need a quick, easy and 
reliable way to map bulk 
measurements to microscopic 
properties



III. Choosing an Optimiser

Error function can be very 
non-convex (local minima) 
and very non-smooth (lots 
of “jiggle”)  cannot trust 
gradient!

 Evolutionary algorithms 
are the only logical choice for 
calibration-by-optimisation

Gradient-based 
optimisersANNs

Evolutionary 
Algorithms



Calibrating Multiple 
Parameters

• Mathematically, to solve for N unknowns
we need N closure relations

•  Calibrating 5 parameters against a 
single measurement is ill-defined

• But this does not mean we need 5 
instruments!

• E.g. a GranuDrum’s free surface shape 
can be fitted by a 3rd order polynomial → 
3 outputs!

• ACCES can calibrate against multiple 
measurements – e.g. GranuDrums at 
different RPMs, Shear Cells, FT4…

•  Drum can (hypothetically) calibrate 
parameters by running at N distinct RPM



Final thought on ACCES: A tool is only as good as its user
 Easy to make ACCES seem “too good to be true”

 In reality, though the process is fully automated, human intelligence is 
still required in the initial design of calibration experiments

ACCES can only work with what we give it!

 IFPRI project has highlighted importance of:
1) Matching the calibration device to the “real” system

2) When using multiple tools, choosing distinct tools



II. Evolutionary Algorithms as an 
Optimisation Tool:
Highly-Autonomous Rapid Prototyping for Particle-handling Processes (HARPPP)



Beyond calibration

• We have used ACCES to 
perfectly calibrate a 
simulation of (say) a mill

• So what next?
• For industry, typically:
• Improve efficiency
• Improve productivity
• Reduce waste
•  Improve green credentials
•  Increase profit

• In other words, we have 
optimised calibration, now we 
want to optimise the system 
itself



Optimising a Mill
Two main options:
1. Optimise process parameters 
(e.g. attritor RPM, fill level…)
(Relatively) simple, easy to 
achieve both in “real life” and 
in simulation.

2. Optimise geometry
Highly costly in real life. Time-
consuming, labour-intensive and “hit 
and miss” both in real life & DEM.

Can we 1) remove the element of 
chance and 2) remove the need 
for human input?



Highly Autonomous Rapid Prototyping for Particulate 
Processes (HARPPP)

• Applying the evolutionary 
approach of ACCES to 
“real” optimisation

• Metaprogramming allows 
not only alteration of 
simulation scripts, but also 
the autonomous design 
and implementation of 
entirely novel 
geometries

• Not a simple task!



Getting multiple technologies to “talk”

CMA-ES



Getting multiple technologies to “talk”

CMA-ES

Designing 
geometry

OpenCascade Netgen

Creating DEM 
simulation of 

geometry
Parallelising Analysing & 

optimising

Every step in this process 
is entirely autonomous



Case Study • Optimising a simple attritor mill
• Give HARPPP the ability to vary pin length, pin diameter, 

pin number (horizontal and vertical), and pin angle
• Set goal to minimise power draw  reduced energy costs, 

“greener”, more sustainable process





What went wrong?

• Technically, nothing
• HARPPP did exactly what we 

requested and perfectly 
minimised power draw

• Nonetheless, it is decidedly not
a good mill!

• Take home point: need to 
thoughtfully define our objective



What went wrong?

• Luckily, HARPPP is capable of 
multi-objective optimization

• Can thus define a more intelligent 
goal, for example minimize power 
draw (Objective 1) whilst 
maintaining a minimum  mean 
pair stress energy (Objective 2)





Results

For different mill geometries, operating 
conditions and particle properties tested, 

energy savings of between 24% and 40% 
achieved compared to base model, whilst 

producing the same or greater average pair 
stress energy



Can we learn from 
the machines?

• In later stages of evolution, 
majority of attritors show 
certain commonalities, 
namely large numbers of 
long, thin, staggered pins

• Indeed, these features 
remain robust even with mills 
and particles at different 
scales!

• Does this suggest some key 
design principles that we can 
learn from HARPPP?



Can we learn from 
the machines?
Possible interpretations:

1. Long pins  value fairly 
obvious!

2. Thin pins  minimise 
propensity to simply “push” 
particles  remove 
interactions which cause 
power draw without 
inducing collision or shear 

3. Large numbers of closely-
packed, staggered pins 
redirect particle motion 
improve axial transport, 
induce “chaos”



Only the tip of the iceberg

• A good proof of concept, but still relatively 
simple.

• Many additional factors which can be 
included:

• Lower-bound on pin size to ensure robustness?
• More complex goals – specific force distribution? 

Optimise both collision and shear?
• More complex geometric variations? 
• …

• User can define arbitrary number of 
objectives & constraints dependent on their 
system, and their goals.

• HARPPP can also, of course, optimise much 
more than just mills!



Not just mills…

• Rotating drum system 
with particles of 
differing size & density

• In standard form, 
significant segregation

• Goal: design baffles 
to optimize mixing



Optimise width, thickness, 
number and axial position

Optimise width, thickness, & 
local angle

Optimise width, thickness, 
number radial position & shape

Optimise size, number & position 
constrain shape to monkey

How can we 
optimise baffles 

for mixing?
Optimise width and thickness, 
constrain number and shape



Optimising Mixing

• Significant segregation in base model (Case 1)
• Marked improvement in Case 2, but geometric 

constraint and/or radial constraint prevents full 
optimization

• Case 3 achieves near-perfect mixing

Case 1
Base Model: M = 0.80 

Case 2
Monkeys: M = 0.96 

Case 3
Rods: M = 0.99 


