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How do we better understand industrial systems?

= Understanding the dynamics of multiphase flows is crucial to the optimisation of
diverse process equipment

= ...but these large, metal systems are near-impossible to accurately image using
conventional methods
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How do we better understand industrial systems?
= Numerical methods (DEM, CFD, MP-PIC...) can provide insight

= But without experimental validation, simulations may be misleading

= > We still need to find a way to experimentally investigate these large,
opaque systems!



Full, three-dimensional
imaging

High temporal and
spatial resolution

In-line
sensors

Capable of extracting data from
large, opaque, metallic systems



Talk Overview
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1) An Introduction to PEPT Il) Case Study lll) The Synergy of PEPT and
Numerical Simulation
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Positron Emission Particle Tracking (PEPT)

Uses highly-penetrating gamma radiation to directly track the
three-dimensional motion of particulate, fluid and multiphase
systems, with high temporal and spatial resolution.

Uses highly-energetic gamma rays, capable of penetrating
opaque media, including aluminium and steel

In essence, PEPT allows us to ‘see inside’
opaque systems.
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How does 1t work?
Tracer Particle

Windows-Yule, C. R. K., Seville, J. P. K.,
Ingram, A., & Parker, D. J. (2020).
Positron Emission Particle Tracking of
Granular Flows. Annual Review of
Chemical and Biomolecular
Engineering, 11.
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Example PEPT 1mag1ng of a serious fluidised bed
: Ul ~

Modular cameras provide
additional, flexible imaging area

Main ADAC camera heads

Large, opaque vessel
(D = 300mm, H > 1m)
Solid steel walls
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Expﬂ e: PEPT | 1mag1ng of a real, industrial fluidised bed Gg'i
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Featured in Ingenia
magazine:
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High-resolution, three-dimensional data
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Fill fraction calculated from

Fill fraction calculated from

Twin screw granulators

(a) Occupancy of granulator with 30 degree mixing zones
12 e e e

(¢) Occupancy of granulator with 90 degree mixing zones
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Context — Coffee Roasting

Transformations during roasting

temperature

property change [Y/Y,]

roast time roast fime




Context — To optimise the product we
. need to be able to see inside
Coftee Roastin particle
8 B the system
bean heat
density transfer
Quantity of beans used and Product Key effects on dynamics are

airflow rate can be controlled Quality not known
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Al-Shemmeri, Windows-Yule, et al. (2021). Coffee bean particle

EXtI'aCtiIlg Data fI‘OIIl PEPT motion in a spouted bed measured using Positron Emission

Particle Tracking (PEPT). Journal of Food Engineering, 110709.

= Trajectories = (Occupancy = Velocity

high

velocity
low
occupancy "‘\\ A
]
e
-1
\. b
th
(BT
.

wopz

— i — — il — il

occupancy

'I
Trajectories identified Fractional residence times Velocity vectors
via analysis of Cartesian determined using time- determined using time-

co-ordinates (t,x,y,z) averaged Eulerian data averaged Eulerian data



Al-Shemmeri, Windows-Yule, et al. (2021). Coffee bean particle

EXtI'aCtiIlg Data fI‘OIIl PEPT motion in a spouted bed measured using Positron Emission

Particle Tracking (PEPT). Journal of Food Engineering, 110709.

= Bean bed delineation

= Defined via Otsu method threshold
= Revealed Two distinct regions
(i) dense bean bed

O

O

O

(ii) dilute freeboard

O

O

Low velocity, high occupancy

Convective heat transfer
limited

(i) dense bean bed (i) dilute freeboard
Lower temp. & heat transfer

high velocity, low occupancy -

Convective heat transfer
dominant

Higher temp. & heat transfer




Results — Effect of batch size

Increasing batch size

roasted coffee with an air velocity of 7.2 m s!

Larger batch = larger bed = reduced heat transfer
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Results — Effect of batch size

Increasing air velocity

200g batches of green coffee
roasted coffee with an air velocity of 7.2 m s!

Higher air flow—> smaller bed = improved heat transfer
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The Commercial Dilemma

Larger batch size
 Increased throughput
- Decreased heat transfer

Increased air flow
« |ncreased heat transfer

- Increased energy requirements

A complex optimization problem!
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An Efficient Route to
Optimisation

- Solving an optimisation
problem requires a detailed
exploration of the relevant
parameter space

. (Lots of experiments!)

- Though powerful, PEPT
facilities are rare, and thus
oversubscribed — and the
technique is costly to run




An Efficient Route to
Optimisation

« Numerical simulations —
e.g. CFD-DEM — are cheap
to run and thus allow the
exploration of vast
parameter space

- However, as established
earlier, we cannot trust
them to be accurate



PEPT as a Validation Experiment
Tool

=  PEPT can provide identical
outputs to DEM, MP-PIC,
CFD...

= - Facilitates detailed,
multi-point comparison
between experiment and
simulation, considering local
variations in key
fields at all points in space

= =2 Uniquely
comprehensive

validation Simulation




PEPT: CED-DEM:

Powerful Cheap and
and
powerful
accurate
but not
but not

accurate
cheap



PEPT:

CFD-DEM:

Powerful Cheap and
and
powerful
accurate
but not
but not

accurate
cheap

,
l',’
PEPT + CFD-DEM: Powerful,
accurate, and cost-effective



Back to our
Case Study
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CFD-DEM model of roaster

3D velocity & occupancy fields produced for
both PEPT and CFD-DEM

PEPT data and CFD-DEM data discretised
on the same three-dimensional mesh
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Che, Windows-Yule, et al. (2023). PEPT validated CFD-

COmpaI‘ing PEPT & CFD‘DEM DEM model of aspherical particle motion in a spouted

bed. Chemical Engineering Journal, 453, 1396809.

AR A

2.0m/s

Occupancy:

h

Solid velocity:

PEPT CFD-DEM CFD-DEM CFD-DEM CFD-DEM
Model 1 Model 2 Model 3 Model 4

Cell-by-cell comparison of multiple three-dimensional fields - detailed,
highly-rigorous validation of models used = aid model choice.



Rigorous, Quantitative Validation

Occupancy:
0.02;
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1.5
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0.659
0.942

0.733
0.930

0.867
0.913

0.834
0.903

Che, Windows-Yule, et al. (2023). PEPT validated CFD-
DEM model of aspherical particle motion in a spouted
bed. Chemical Engineering Journal, 453, 1396809.

Simulation accuracy
can be quantitatively
assessed through
Pearson coefficient (or
others statistical
measures)

Pearson coefficient can
also be used as a cost

function for ACCES
calibration

- Skip the
characterisation step!



Che, Windows-Yule, et al. (2023). PEPT validated CFD-

ngorous Quantltatlve Valldatlon DEM model of aspherical particle motion in a spouted

bed. Chemical Engineering Journal, 453, 139689.

For further rigour, can
validate under
numerous system
conditions spanning
full parameter space

of interest...

PEPT D-Dioguardi M-Dioguardi D-Gidaspow M-Gidaspow PEPT D-Dioguardi M-Dioguardi  D-Gidaspow  M-Gidaspow



Che, Windows-Yule, et al. (2023). PEPT validated CFD-

Rigorous, Quantitative Validation DEM model of aspherical particle motion in a spouted

bed. Chemical Engineering Journal, 453, 139689.

PEPT measurement: Case 1 Case 2 Case 3
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End result: a
comprehensively
validated
numerical model
which can be used

to easily,
efficiently and
cheaply gain
iInsight into JDE'S
systems.




CFD
velocity
field

@ CFD-DEM, r2=0.78
" @ CFD-Lag,r*=0.23

CFD Velocity (m/s) “-x

PEPT
velocity
field

Not just spouted beds, not ‘just’ particles

PEPT Velocity (m/s) o
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Inspiring science, enhancing life
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(o,
Autonomous Calibration using Evolutionary EH
Algorithms '-

ACCES

= Calibration is an infamously slow and difficult task
And one too often overlooked in the literature!

= As well as simply validating existing algorithms, PEPT can be
used to calibrate simulations

= Specifically, it can be used to provide detailed objectives for
evolutionary algorithms
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ACCES:
Autonomous
Characterisation &
Calibration using
Evolutionary

Simulation

. Choose experimental system to
model

II. Define a cost function to quantify
difference between experiment &
simulation

lIl. Choose a suitable optimiser

IV.Set goal to minimise error function
(i.,e. maximise agreement between
simulation and experiment)

V. lterate towards minimum
(i.e. find ‘true’ DEM parameters)



I. Choosing a
system

To illustrate ACCES in an
accessible manner, let us
consider a simple system
to model: Granutools
GranuDrum

- Simple
- Industrially relevant
- Diverse phenomenology




II. Defining a cost
function

- Cost function can relate to
practically any quantity

* Mean system velocity

* Velocity distribution

» Density distribution

* Granular temperature...

- Precise choice depends
on goals of calibration

- In this example we want to
obtain values for sliding &
rolling friction

- >Free surface shape as f0) = 0.005 >3 + 0.002 x2 - 0.023 x + 0.04
cost function




I1. Defining an error

function
- Free surface can be characterised by a

3" order polynomial

Compare simulation and experimental fits



I1. Defining an error
function

- Free surface can be characterised by a
3" order polynomial

- Compare simulation and experimental fits

- Cost function taken as the integral of the
absolute difference between
the 2 polynomials

used to solve the
optimisation problem



Evolutionary Optimisation — How it Works

The problem with
evolutionary
algorithms: lots of
function evaluations

=

Especially problematic
when coupled to DEM Initial population

The fitness of the Individuals are sorted

how well does the bird

Utilise state-of-art fly?
CMA-ES algorithm,
which adaptively
changes as the spread _
of the function
increases il iy
population. Individuals with the best Individuals with the worst
UNIVERSITYO! e WM Lol i
mutations in the genotype

are added.




Evolutionary Optimisation — How 1t Works in ACCES

Can run on anything from a

User input (once, at laptop to a supercomputer

start of process) Launch
simulation

Existi User defines .o
XISting i Input script .
simulation variable P . P Evolutionary lif
) parameters ACCES Python automatically Optimisation —_ True-to-life
script & cost Library parallelised simulation
function r _ '
Redefine Collect

variable results &
parameters test fitness
\ v J

Absolutely no user input required!

- Metaprogramming (code that writes code): ACCES takes input
’ @} UNIVERSITYOF

BIRMINGHAM Scripts, understands them, hacks them, and modifies them to run
in fault-tolerant massively parallel environments




« ACCES converges on the parameter values that

V. Iteratmg toward minimise the error values (cost function)
optlmal parameters o It evolvesg farr_nly_ (_)f solutions in epochs (x-axis)
towards the fittest individuals.
RN Initially exploring P

2I,"""\\ et N sk |1
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o Ly *ad e g egtl L —
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Rapid and clear

= 1000 8. . .
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Fos sensible values : , |} §?I'I='lis;: simulations per “epoch”)
= Ub c 8 .§ s
ay :w Wil :
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: Same problem, 1/10'" family size
V. Iteratlng toward “Deep” local minimum — gradient-based

Optlmal parameters #“77™, optimiser would likely get “trapped”
::i;e:..:) i 4

[ =]
BT Ak 8
"N

A\ iz " e

= What if | don’t have 100
CPUs handy?

0.6

Sliding Friction
Rolling Friction

04 s

1 . H " H 05 *f Bis 27N
= “Family size” can be varied ) e S
at WIII. 0 G 0 :i-l-li-.-.I.IE;;:I..III-..:.. .;.:_,,

_ “Fully converges
= Larger: more global search, on same, true o -.

fewer epochs

1.2

: . g ) optimum . * I, ﬁ
= Smaller: fewer simulations | el
per epoch, more epochs T B
= ] [ ) "i“"“ ihi °i=: {l Ellouo
- - Fully scalable from HPC e T R e e
tO Laptop Epoch Epoch
« Can still autonomously ACCES autonomously  Convergence in <40 epochs
“escape” false minima increases search area (<400 evaluations) with 2
and reach true parameter free parameters
values C.f. ANNs & other optimisers for which 10,000 evaluations per

parameter would be considered good!



Early guesses Converged solution

Error of less
than 4 mm?

Experiment Superimposed Simulation

Example solution




Summary

= PEPT facilitates the detailed, 3D imaging of particulate, fluid,
and multiphase media, even in large, opaque systems.

= Diverse array of quantities extracted from PEPT facilitates deep
insight into the internal dynamics of both scientific and industrial
systems

=  Synergy between PEPT and numerical methods facilitates an

optimal mix of efficiency and accuracy not achievable using
either methodology in isolation
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Why is this talk timely?

= DEM is nothing new but recent
advances in computational
power, our ability to parallelise
code, techniques for upscaling
simulations, and advances in Al
combined mean that today | can
do things with DEM that at the
start of my career | could only
dream of

= Specifically, things like this:

graining

%] UNIVERSITYOE

g BIRMINGHAM




“Evolving” the optimal design for a unit operation
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Autonomous Characterisation & Calibration using Evolutionary Simulation (ACCES)




Real-world motivation: the need 2 : IFPRI
for a better meth()d Of Callbratlon ® c. " International Fine Particle Research Institute

= Leading a 5-year project with IFPRI to investigate current
industrial DEM characterisation/calibration strategies

= Detailed interviews with 8 (now 12) multinational companies
who use DEM, spanning Agriculture, Chemical, FMCG, Food,
& Pharmaceutical sectors

= Goal: to determine a “gold standard” methodology for the
calibration of DEM simulations
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Real-world motivation: the need @ IFPRI

for a better meth()d Of Calibration :. :..; ®*" International Fine Particle Research Institute

Company

Phase 1 = No two companies

I*EE BN B Bl BN EN adopted the same
ITEENE & = B = OE P .
1 procedures, equipment,

Key: Characterisation methods O r g e O m et ri C m O d e I S

Shear testing Key: Shape model
Angle of repose testing Rolling friction - M O St p rod u Ced
Impact testing Glued sphere )
T — Superquadric different values for
Ramp rolling friction testing Polyhedral -
Nond same materials

Laser diffraction

Microscopy / Optical imaging

= The result?

Company

| Phase2 |
Phase3 ||




Real-world motivation: the need .. ¢ IFPRI

fOI‘ a better methOd Of Callbrathn ® .. International Fine Particle Research Institute
Real, experimental
PEPT data Close, but no cigar Not even Physically
(more on this later) A \ close impossible!
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Real-world motivation: the need ..
for a better method of calibration f

The scary 1) These are real

_ methods used by
part(s): real companies

y (mm)
y (mm)

y (mm)

y (mm)

X (mm)

H

20

s’ IFPRI
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Real-world motivation: the need ..
for a better method of cahbratlon

The scary 2) While a sensible operator will re-try these...

rt(s): ...without a technique like PEPT, how would
part(s): .
we know the others are inaccurate?

! IFPRI

International Fine Particle Research Institute
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y (m
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Real-world motivation: the need .. ! IFPRI

for d better meth()d Of Callbratlon "' International Fine Particle Research Institute

The scary 3) This is for a relatively simple, smgle-phase Ssystem containing
rt(s): only spherical particles. How will these methods stand up for
part(s): more complex cases? *

UNIVERSITYoF
BIRMINGHAM




Problem statement

= Particles’ bulk properties are quick
and easy to measure using easily-
available equipment and
standardised procedures.

= Measurement of particles’
microscopic properties... is none
of the above

= > We need a quick, easy and
reliable way to map bulk
measurements to microscopic
properties

%4 UNIVERSITYOF

gr- BIRMINGHAM




Global maxima

Gradient-based
optimisers

Evolutionary
Algorithms




Calibrating Multiple
Parameters

Mathematically, to solve for N unknowns
we need N closure relations

—> Calibrating 5 parameters against a
single measurement is ill-defined

But this does not mean we need 5
instruments!

E.g. a GranuDrum’s free surface shape
can be fitted by a 3rd order polynomial —
3 outputs!

ACCES can calibrate against multiple
measurements — e.g. GranuDrums at
different RPMs, Shear Cells, FT4...

- Drum can (hypothetically) calibrate 3N
parameters by running at N distinct RPM

ceeer

Experiment

>,

A

A

o

Simulation

.
.

10 RPM

15 RPM

30 RPM

45 RPM



Final thought on ACCES: A tool is only as good as its user

= Easy to make ACCES seem “too good to be true”

= Inreality, though the process is fully automated, human intelligence is
still required in the initial design of calibration experiments l
ACCES can only work with what we give it!

= |FPRI project has highlighted importance of:
1) Matching the calibration device to the “real” system
2) When using multiple tools, choosing distinct tools
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Highly-Autonomous Rapid Prototyping for Particle-handling Processes (HARPPP)




Beyond calibration

- We have used ACCES to
perfectly calibrate a
simulation of (say) a mill

- So what next?
« For industry, typically:
* Improve efficiency
Improve productivity
* Reduce waste
* = Improve green credentials
* =2 Increase profit

 In other words, we have
optimised calibration, now we
want to optimise the system

itself JMondelez,

International




Optimising a Mill
Two main options:

1. Optimise process parameters
(e.g. attritor RPM, fill level...)

(Relatively) simple, easy to
achieve both in “real life” and
in simulation.

2. Optimise geometry

Highly costly in real life. Time-
consuming, labour-intensive and “hit
and miss” both in real life & DEM.

Can we 1) remove the element of

chance and 2) remove the need _
for human input? .Mondelez,

International




Highly Autonomous Rapid Prototyping for Particulate
Processes (HARPPP)

- Applying the evolutionary
approach of ACCES to
“real” optimisation

- Met ' |
= ACRDD g e

simulation scripts, but also
the autonomous design
and implementation of
entirely novel
geometries

- Not a simple task!




Getting multiple technologies to “talk”




Getting multiple technologies to “talk”

HA? DDD Every step in this process
is entirely autonomous

OpenCascade  Netgen

Designing Creating DEM Analysing &

- Parallelising ..
geometry optimising




T
+ 4

Case Study - Optimising a simple attritor mill
- Give HARPPP the ability to vary pin length, pin diameter,
pin number (horizontal and vertical), and pin angle

- Set goal to minimise power draw = reduced energy costs,
“greener”, more sustainable process







What went wrong?

- Technically, nothing

- HARPPP did exactly what we
requested and perfectly
minimised power draw

- Nonetheless, it is decidedly not
a good mill!

- Take home point: need to
thoughtfully define our objective

[ts not o shick. o~




[ts not o shick. o~

TERL

What went wrong?

- Luckily, HARPPP is capable of
multi-objective optimization

- Can thus define a more intelligent
goal, for example minimize power
draw (Objective 1) whilst
maintaining a minimum mean
pair stress energy (Objective 2)







Results

For different mill geometries, operating
conditions and particle properties tested,
energy savings of between 24% and 40%
achieved compared to base model, whilst
producing the same or greater average pair
stress energy



Can we learn from
the machines?

- In later stages of evolution,
majority of attritors show
certain commonalities,
namely large numbers of
long, thin, staggered pins

- Indeed, these features
remain robust even with mills
and particles at different
scales!

- Does this suggest some key
design principles that we can
learn from HARPPP?




Can we learn from
the machines?

Possible interpretations:

1. Long pins = value fairly
obvious!

2. Thin pins = minimise
propensity to simply “push”
particles - remove
interactions which cause
power draw without
inducing collision or shear

3. Large numbers of closely-
packed, staggered pins =
redirect particle motion -
iImprove axial transport,
induce “chaos”
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Not just mulls...

- Rotating drum system
with particles of
differing size & density

- In standard form,
significant segregation

- Goal: design baffles
to optimize mixing




Optimise width, thickness, Optimise width, thickness,
number and axial position number radial position & shape

Optimise size, number & position > Optimise width, thickness, &
constrain shape to monkey local angle
Optimise width and thickness,
constrain number and shape




Y-Position

I Optimising Mixing
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- Significant segregation in base model (Case 1)

- Marked improvement in Case 2, but geometric
constraint and/or radial constraint prevents full

optimization

- Case 3 achieves near-perfect mixing

Case 2
Monkeys: M = 0.96
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